Benutzer-Werkzeuge

    ~~ RM: keiner ~~ UI: ---start--- ~~ IP:3.239.119.159~~

Webseiten-Werkzeuge


Platine (PCB)

Eine Leiterplatte (Leiterkarte, Platine oder gedruckte Schaltung, engl. printed circuit board, PCB) ist ein Träger für elektronische Bauteile. Sie dient der mechanischen Befestigung und elektrischen Verbindung. Nahezu jedes elektronische Gerät enthält eine oder mehrere Leiterplatten.

Leiterplatten bestehen aus elektrisch isolierendem Material mit daran haftenden, leitenden Verbindungen (Leiterbahnen). Als isolierendes Material ist faserverstärkter Kunststoff üblich. Die Leiterbahnen werden zumeist aus einer dünnen Schicht Kupfer geätzt. Die Bauelemente werden auf Lötflächen (Pads) oder in Lötaugen gelötet. So werden sie gleichzeitig mechanisch gehalten und elektrisch verbunden. Größere Komponenten können auch mit Kabelbindern, Klebstoff oder Verschraubungen auf der Leiterplatte befestigt werden.

Einfache Leiterplatten bestehen aus einem elektrisch isolierenden Trägermaterial (Basismaterial), auf dem eine oder zwei Kupferschichten aufgebracht sind. Die Schichtstärke beträgt typischerweise 35 µm und für Anwendungen mit höheren Strömen zwischen 70 µm und 140 µm. Um dünnere Leiterbahnen zu ermöglichen, werden auch Leiterplatten mit nur 18 µm Kupfer hergestellt. In englischsprachigen Ländern wird manchmal statt der Schichtstärke die Masse der leitfähigen Schicht pro Flächeneinheit in Unzen pro Quadratfuß (oz/sq.ft) angegeben. In diesem Fall entspricht 1 oz/sq.ft etwa 35 µm Schichtstärke.

Heute werden – außer für billige Massenartikel – meist mit Epoxidharz getränkte Glasfasermatten verwendet (Materialkennung FR4). Dieses Material hat eine bessere Kriechstromfestigkeit und bessere Hochfrequenzeigenschaften sowie eine geringere Wasseraufnahme als Hartpapier.

Mehrlagige Platinen

Um der Packungsdichte bei modernen SMD-Bauteilen, insbesondere in Computern, gerecht zu werden, reicht es nicht aus, wenn sich die Leiterbahnen nur auf einer Seite der Leiterplatte befinden. Nach den doppelseitigen Leiterplatten, die auf beiden Seiten der Leiterplatte eine Kupferschicht haben, begann man, mehrere dünnere Leiterplatten mit sog. Prepregs aufeinanderzukleben. Diese mehrlagigen sog. Multilayer-Leiterplatten können derzeit bis zu 48 Schichten, in Einzelfällen auch mehr, haben. Üblich sind z. B. vier bis acht Lagen in Computern und bis zu zwölf Lagen in Mobiltelefonen. Die Verbindungen zwischen den Lagen werden mit Durchkontaktierungen („VIAs“) hergestellt.

In vielen Fällen ist die Verwendung von Multilayer-Leiterplatten auch bei geringerer Packungsdichte notwendig, z. B. um die induktionsarme Stromversorgung aller Bauteile zu gewährleisten.

Leiterbahnen

Die Strombelastbarkeit (Stromdichte) von Leiterbahnen ist ein wichtiger Design-Aspekt. Sie kann wesentlich höher als diejenige von Massivdrähten liegen, da das Substrat durch Wärmeleitung kühlt.

Die kapazitive und induktive Verkopplung der Leiterbahnen, deren Empfänglichkeit gegenüber externen elektromagnetischen Feldern sowie die Abstrahlcharakteristik (Störemission) wird unter dem Sammelbegriff Elektromagnetische Verträglichkeit (EMV) beschrieben.

Weitere Aspekte sind:

  • Bei hohen Frequenzen und Impuls-Steilheiten ist die Wellenimpedanz der Leiterbahnen von Bedeutung (siehe Streifenleitung).
  • Bei analogen Signalen (besonders Audioanwendungen mit hohem Dynamikumfang) müssen Masseschleifen (Erdschleifen, Brummschleifen) vermieden werden, siehe auch Sternpunkterdung.
  • Bei hohen elektrischen Spannungen müssen aus Sicherheitsgründen zwischen den Leiterbahnen bestimmte Mindestabstände (Aura) eingehalten werden.

Leiterplattentechnologien

FIXME

Ein großer Teil der Leiterplatten in elektronischen Geräten wird auch heute noch aus einseitig kaschiertem Material und mit bedrahteten Bauteilen hergestellt. Mit fortschreitender Miniaturisierung werden auf deren Unterseite zunehmend SMD-Bauteile eingesetzt, während die Durchsteckbauelemente von oben bestückt werden.

Die SMD-Bauteile können zusätzlich geklebt sein, so dass sie beim Löten nicht abfallen.

Die teureren durchkontaktierten Platinen sowie noch teurere Mehrlagenplatinen werden bei komplexeren (z. B. Computer), zuverlässigeren (z. B. Industrieelektronik) oder miniaturisierten (z. B. Mobiltelefone) Baugruppen eingesetzt.

FIXME

Bei gedruckten Schaltungen werden dagegen die Anschlussdrähte der Bauteile von oben durch Bohrlöcher durch die Leiterplatte gesteckt (engl. Through Hole Technology, THT) – eine auch heute noch weit verbreitete Technik. Auf der Unterseite (Löt-, Leiter- oder L-Seite) befinden sich die Kupferleiterbahnen, an denen sie festgelötet werden. Das erlaubt eine vereinfachte und automatisierbare Fertigung, gleichzeitig sinkt die Fehlerrate bei der Produktion, da Verdrahtungsfehler damit für die Schaltung auf der Leiterplatte ausgeschlossen werden.

VIA durchgeschnitten oben links BGA Komplexere einlagige Leiterplatten erfordern zusätzliche Verbindungen, die nicht im Layout herstellbar sind. Diese werden durch Lötbrücken mittels abgewinkelter Drähte oder Null-Ohm-Widerstände hergestellt. Letztere lassen sich besser in Bestückungsautomaten einsetzen. Alternativ nutzt man für diese Verbindungen Kupferbahnen auf beiden Seiten der Leiterplatte (doppellagige Leiterplatte, DL). Verbindungen zwischen oberer (Bestückungs- oder B-Seite) und unterer Seite wurden durch Löten eingepresster Stifte oder Niete erzeugt.

VIA

FIXME Erst in den 1960er Jahren wurden diese Verbindungen (Durchkontaktierungen, DK, engl. VIAs) durch die Leiterplatte hindurch chemisch durch Metallisierung der Lochwände der Bohrungen erzeugt.

Tests

FIXME siehe auch Service / Tests

Durchgangstest:
Beim Durchgangstest wird die Leiterplatte auf fehlerhafte und fehlende Verbindungen getestet. Diese Unterbrechungen können durch mechanische Beschädigungen oder durch Filmfehler beim Belichten entstehen. Funktionsweise [Bearbeiten]

Beim Durchgangstest werden alle zu einem Netz gehörenden Punkte gegeneinander getestet. Bei Einzelpunkten kann keine Verbindung geprüft werden. Durch Schmutz auf den Kontaktierstellen können die Messungen ein hochohmiges Ergebnis zeigen. Mögliche Verschmutzungen sind: Staub, Fräsrückstände oder Oxidation auf der Kontaktierfläche. Durch ein erneutes Kontaktieren (Retest) können diese Phantomfehler (Fehler, die nicht existieren) oft ausgeschlossen werden.

  • Messung < 10 Ω → Gute Verbindung
  • Messung > 10 Ω → Hochohmige Verbindung
  • Messung > 2 MΩ → Unterbrechung

Kurzschlusstest:
Ein Kurzschluss ist eine Verbindung zwischen zwei Punkten, die entsprechend der Schaltung nicht bestehen darf. Kurzschlüsse sind Verbindungen, die z. B. durch Zinnfäden, schlechtes Ätzen oder mechanische Beschädigung der Isolationsschicht zwischen den Lagen hervorgerufen werden.

Für jedes Netz wird ein Testpunkt als Primärtestpunkt festgelegt. Danach wird zwischen allen Netzen die Isolation gemessen.

  • Messung > 2 MΩ → Kein Kurzschluss
  • Messung < 2 MΩ → Hochohmiger Kurzschluss
  • Messung < 100 Ω → Kurzschluss

Befestigungen

Bei der Montage von Platinen in einem Gehäuse muss zwischen der ggf. metallenen Montagebasis und der Platine ein Abstand sichergestellt werden. Zum einen, damit keine Kurzschlüsse entstehen, zum anderen, damit die unebene Unterseite der Platine mit den vielen Lötpunkten und teilweise hervorstehenden Drahtenden nicht direkt aufliegt, was zu mechanischen Spannungen führen würde. Dazu verwendet man u. a. lange Gewindeschrauben mit Abstandshaltern und Muttern oder Kunststoffelemente, die in Löcher in der Platine und auf der anderen Seite im Gehäuse eingeklipst werden. Wenn die Leiterplatte eine Steckkarte ist, die auf einer anderen Leiterplatte sitzt, verwendet man meist direkte Steckverbinder und Federleisten.

www.amigawiki.de

Einzelnachweis

Zuletzt geändert: 2021/03/23 01:35